If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+2y-1443=0
a = 1; b = 2; c = -1443;
Δ = b2-4ac
Δ = 22-4·1·(-1443)
Δ = 5776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5776}=76$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-76}{2*1}=\frac{-78}{2} =-39 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+76}{2*1}=\frac{74}{2} =37 $
| 36x^2+4=0= | | 2^(7x)=2*3 | | 2^7x=2*3 | | T+4t=480 | | x/1.5=75 | | 8x-37=6x+13 | | 18.2=8x | | -x*2-2x+3=-6x | | 99x=6 | | Y=15x-13 | | -0.1(7+x)=0.5 | | -2x(-4-4)=0 | | 7b(5b+5)=0 | | 3(4+5m)=0 | | 7(9m+2)=0 | | -5(2r+6)=0 | | 4d-2d=32 | | x+2(2x+5)=-5 | | 5x+3(x-3)=1 | | x-10x6=42 | | H=-16t^2+85t+5 | | Q=4x+26 | | 2(7x+3)=90 | | 12*3.5=x | | 3x+10=57 | | 21-r=87-2r | | 3g+7=7g-13 | | (1/8)^(2x+1)=64 | | Y=2x(0.2) | | 8x+11+2x-1=90 | | 10=0.5/x | | 4x+11/2=x-6 |